Equilibrium and rapid kinetic studies on nocodazole-tubulin interaction.
نویسندگان
چکیده
The interaction between nocodazole and calf brain tubulin in 10(-2) M sodium phosphate, 10(-4) M GTP, and 12% (v/v) dimethyl sulfoxide at pH 7.0 was studied. The number of binding sites for nocodazole was shown to be one per tubulin monomer of 50,000 as a result of equilibrium binding studies by gel filtration and spectroscopic techniques. The presence of microtubule-associated proteins did not significantly affect the binding of nocodazole to tubulin. The apparent equilibrium constant measured at 25 degrees C was (4 +/- 1) X 10(5) M-1. Temperature does not significantly affect the apparent equilibrium constant; hence, the binding of nocodazole to tubulin is apparently entropy driven. Stopped flow spectroscopy was employed to monitor the rate of nocodazole binding under pseudo first order conditions. The effects of temperature and nocodazole concentration were studied. The apparent rate constants were dependent on the concentration of nocodazole in a nonlinear manner. In conjunction with results from structural and thermodynamic studies the kinetic results were interpreted to suggest a mechanism of T + N in equilibrium with TN in equilibrium with T* N, where T and N are tubulin and nocodazole, respectively. T and T* represent two conformational states of tubulin. Furthermore, the kinetic data are consistent with the thermodynamic data only if a model of two parallel similar reactions were considered, one rapid and the other slow. The initial binding step for both the rapid and slow phases was characterized by identical binding constants; however, there was a significant difference in the rates of isomerization. Hence, nocodazole is potentially a useful probe for amplifying differences in solution properties of tubulin subspecies.
منابع مشابه
Equilibrium, kinetic and thermodynamic studies on the adsorption of thiocyanate by Steel slag in an Aqueous System
The use of steel slag in an adsorption process for the removal of thiocyanate has been studied for the first time. Steel slag, a readily available by-product of the steel industry, can be a suitable candidate for the study of the adsorption of thiocyanate found in coke oven effluent. The parameters considered for adsorption studies were pH, initial concentration, temperature, and the amount of ...
متن کاملTubulin dynamics in cultured mammalian cells
Bovine neurotubulin has been labeled with dichlorotriazinyl-aminofluorescein (DTAF-tubulin) and microinjected into cultured mammalian cells strains PTK1 and BSC. The fibrous, fluorescence patterns that developed in the microinjected cells were almost indistinguishable from the pattern of microtubules seen in the same cells by indirect immunofluorescence. DTAF-tubulin participated in the formati...
متن کاملNanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro.
Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells an...
متن کاملKinetic and Equilibrium Studies on the Adsorption of Crystal Vio-let Dye Using Leucaena Leucocephala (Subabul)Seed Pods as an Adsorbent
متن کامل
Equilibrium and Kinetic Studies on the Adsorption of Acid Yellow 36 Dye by Pinecone
Background & Aims of the Study: Dyes have significant role in environmental problems, due to their toxic effects on the food chain and sources of water. The purpose of this research was to study the adsorption of acid yellow 36 dye onto pinecone using batch system. Materials & Methods: This research was performed at laboratory scale and batch system. Equilibrium isotherms...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 260 20 شماره
صفحات -
تاریخ انتشار 1985